Realtime Classification for Encrypted Traffic

Roni Bar-Yanai!, Michael Langberg?*, David Peleg®**, and Liam Roditty*

L (Cisco, Netanya, Israel

rbaryana@cisco.com
2 Computer Science Division, Open University of Israel, Raanana, Israel
mikel@openu.ac.il
3 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
david.peleg@weizmann.ac.il
4 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
liamr@macs.biu.ac.il

Abstract. Classifying network flows by their application type is the
backbone of many crucial network monitoring and controlling tasks,
including billing, quality of service, security and trend analyzers. The
classical “port-based” and “payload-based” approaches to traffic clas-
sification have several shortcomings. These limitations have motivated
the study of classification techniques that build on the foundations of
learning theory and statistics. The current paper presents a new sta-
tistical classifier that allows real time classification of encrypted data.
Our method is based on a hybrid combination of the k-means and k-
nearest neighbor (or k-NN) geometrical classifiers. The proposed classi-
fier is both fast and accurate, as implied by our feasibility tests, which
included implementing and intergrading statistical classification into a
realtime embedded environment. The experimental results indicate that
our classifier is extremely robust to encryption.

1 Introduction

Classifying network flows by their application type is the backbone of many
crucial network monitoring and controlling tasks. Basic network management
functions such as billing, quality of service, network equipment optimization,
security and trend analyzers, are all based on the ability to accurately classify
network traffic into the right corresponding application.

Historically, one of the most common forms of traffic classification has been
the port-based classification, which makes use of the port numbers employed
by the application on the transport layer. However, many modern applications
use dynamic ports negotiation making port-based classification ineffective [I0J17]
with accuracy ranges between 30% and 70%.

The next step in the evolution of classification techniques was Deep Packet
Inspection (DPI) or payload-based classification. DPI requires the inspection of

* Supported in part by The Open University of Israel’s Research Fund (grant no.
46109) and Cisco Collaborative Research Initiative (CCRI).
** Supported in part by Cisco Collaborative Research Initiative (CCRI).

P. Festa (Ed.): SEA 2010, LNCS 6049, pp. 373-385] 2010.
© Springer-Verlag Berlin Heidelberg 2010

374 R. Bar-Yanai et al.

the packets’ payload. The classifier extracts the application payload from the
TCP/UDP packet and searches for a signature that can identify the flow type.
Signatures usually include a sequence of bytes/strings and offsets that are unique
to the application and characterize it. DPI is widely used by today’s traffic clas-
sifier vendors. It is very accurate [I1JI7] but suffers from a number of drawbacks.

Recently, we have witnessed a dramatic growth in the variety of network ap-
plications. Some of these applications are transmitted in an encrypted manner,
posing a great challenge to the DPI paradigm. Such applications may choose to
use encryption both for security and to avoid detection. Common P2P applica-
tions such as BitTorrent and eMule have recently added encryption capabilities
(primarily to avoid detection). As a significant share of the total bandwidth is
occupied by P2P applications and since current DPI based classifiers must see
the packet’s payload, encryption may become a real threat for ISP’s in the near
future. The inability of port-based and payload-based analysis to deal with the
wide range of new applications and techniques used in order to avoid detection
has motivated the study of other classification techniques. Two examples in-
clude behavior based classification and classification based on a combination of
learning theory and statistics.

In the behavioral paradigm, traffic is classified by identifying a certain behav-
ior that is unique to the application at hand. In this setting, the signature is
not syntactic (as in DPI classification) but rather a combination of events. For
example, it is possible to identify encrypted BitTorrent by intercepting the tor-
rent file (a file used to start the downloading process in BitTorrent clients) [3].
The torrent file includes a list of BitTorrent hosts, each possessing certain parts
of the downloaded file. The classifier processes the file and saves these hosts.
Now, an encrypted flow that is destined to one of these hosts will be marked
immediately as BitTorrent. The drawback of such behavioral solutions is that
they are too specific, and it will not take long before the P2P community strikes
back by encrypting torrent files [3].

This paper presents a new method for statistical classification. Our method is
based on a hybrid combination of the well known k-means and k-nearest neigh-
bor geometrical classifiers. The proposed classifier is both fast and accurate, as
implied by our feasibility tests, which included implementing and intergrading
our classifier into a realtime embedded environment. The experimental results
indicate that our classifier is extremely robust to encryption and other DPI
flaws, such as asymmetric routing and packet ordering. Finally, we show how
to boost the performance of our classifier even further, by enhancing it with a
simple cache-based mechanism that combines elements of port-based and statis-
tical classification. In what follows, we elaborate on statistical classification in
general and specify our contribution.

Related work. The statistical approach to classification is based on collecting sta-
tistical data on properties of the network flow, such as the mean packet size, flow
duration, number of bytes, etc. The statistical paradigm relies on the assumption
that each application has a unique distribution of properties that represents it

Realtime Classification for Encrypted Traffic 375

and can be used to identify it. This approach has been the subject of intensive
research in the recent years.

The work of Paxson [I5] from 1994 established a relationship between flow
application type and flow properties (such as the number of bytes and flow
duration). A methodology for separating chat traffic from other Internet traffic,
which uses statistical properties such as packet sizes, number of bytes, duration
and inter arrival times of packets, was developed in [5]. Mcgregor et al. [12]
explored the possibility of forming clusters of flows based on flow properties
such as packet size statistics (e.g., minimum and maximum), byte count, and
idle times etc. Their study used an ezpectation mazimization (EM) algorithm to
find the clusters’ distribution density functions.

A study focusing on identifying flow application categories rather than specific
individual applications was presented in [16]. While limited by a small dataset,
they showed that the k-nearest neighbor algorithm and other techniques can
achieve rather good results, correctly identifying around 95% of the flows. Zander
et al. [18], using an EM based clustering algorithm, obtained an average success
rate of 87% in the separation of individual applications. The basic Navie Bayes
algorithm, enhanced by certain refinements, was studied by Moore et al. [13]
and was shown to achieve an accuracy level of 95%.

Realtime classification, in which the flow is to be classified based mainly on its
first few packets’ size and direction, was addressed in [2/417]. It is important to
note that these algorithms were tested only against basic application protocols.
Encrypted BitTorrent and Gnuttela, for example, use packet padding in the
beginning of the flow start, to avoid such detection methods. For more details
on related work see [TOJT4].

Our contribution. The current paper introduces a hybrid statistical algorithm
that integrates two basic and well known machine learning algorithms, known
as k-nearest neighbors and k-means. The algorithm is fast, accurate and most
important it is insensitive to encrypted traffic. Moreover, the strength of our
algorithm is precisely in overcoming several weaknesses of the DPI approach,
which is the leading technology used by current network classifiers. In particular,
our algorithm overcomes asymmetric routin and packet ordering. To the best
of our knowledge, our study is the first to demonstrate the potential of statistical
methods on encrypted traffic in realtime classification.

To put our results in perspective, we note that most previous statistical clas-
sification methods were tested in an off-line environment [14]. The results on re-
altime classification [2/4l7] are all based on inspecting the first five initial packets
of the flow, and thus work well only when these packets represent the application
under study. Note that encrypted Bittorrent and EMule, which use padding on
their initial packets, cannot be classified using such techniques.

The strength of our algorithm is demonstrated on Encrypted BitTorrent, one
of the hardest applications to identify. The BitTorrent development community
puts a lot of effort into detection avoidance and uses port alternation, packet
padding (on initial flow packets) and encryption as part of this effort. Actually, as

! Occurring when incoming and outgoing flows use different routers.

376 R. Bar-Yanai et al.

our algorithm is insensitive to encryption, it turns out that it identifies encrypted
and non-encrypted BitTorrent flows with the exact same accuracy.

The data set used for the experiments reported in this paper was recorded in
2009 (full payload) on a real ISP network edge router on two different geographi-
cal locations, and contains millions of flows. The record is unique in its relevance
and reflects the distribution and behavior of contemporary application flows.
We integrated our statistical classifier into a realtime embedded environment.
The feasibility test included a full implementation of our algorithm on SCE2020,
which is one of the leading Cisco platforms specialized to classification. The al-
gorithm was tested in full line rate, and the experiment has demonstrated that
our algorithm can be implemented and integrated on platforms that are limited
on resources, memory and cpu, and require realtime responses.

In addition, we show that using a simple LRU cache drastically reduces clas-
sification time and memory of more than 50% of the flows, and also increases
the classification accuracy of some of the protocols.

2 Methodology

The general paradigm followed by our classifier is a machine learning one. Roughly
speaking, we first build a training set and use it to train our classifier; we then turn
to the task of classification. In what follows we briefly elaborate on the techniques
we use to obtain labeled traffic (for our training set), we then address some special
properties of the data sets we use.

Collecting labeled data. To train our classifier, we require a collection of reli-
ably classified traffic flowsd. We were provided such a database generated using
Endace [0] for real-time traffic recording and injecting, and labeled using the
Cisco SCE 2020 box (a professional tool for classifying and controlling network
traffic) coupled with manual inspection and verification. The database included
12 million flows recorded in 2009 on ISP network edge routers on two different
geographical locations.

As mentioned earlier, one of the major challenges in flow classification is
identifying encrypted flows. In the current study we used two different sources to
obtain encrypted flows. Our first database, which was recorded in 2009, contains
some encrypted flows of BitTorrent and Skype. Our second source was a manual
recording of a BitTorrent application taken in a controlled environment.

Special properties of the data set. Short flows, namely, flows with fewer than
15 payload packets, were removed from the dataset. The rational behind ig-
noring short flows is that we are using the statistical properties of the flow for
classification, and measuring such properties on short flows is unreliable. Hence
short flows require a different approach. Note that in many practical scenarios,
classifying short flows is of lower priority, as they account for an insignificant

2 The term flow refers to a single data flow connection between two hosts, defined
uniquely by its five-tuple (source IP address, source port, destination IP address,
destination port, protocol type TCP/UDP).

Realtime Classification for Encrypted Traffic 377

fraction of the overall utilized bandwidth. We remark that flows with fewer than
15 packets account for 87% of the total flows but only 7% of the total bytes.
Using the algorithm refinement of an LRU cache for heavy hosts, we were able
to classify around fifty percent of the short flows as well, thus reducing the total
bytes that were actually ignored to approximately 3.5%.

Another property of the data set is that only applications with sufficiently
significant representation in the data traces were considered. Specifically, we
considered applications that had at least 4000 flow instances in our records. The
flow distribution was as follows: Http flows accounted for 59% of the flows, Bit-
Torrent for 17.1%, SMTP 13%, EDonkey for 8.5%, and POP3, Skype, Encrypted
BitTorrent, RTP and ICQ were each responsible for less than 1% of the flows.

3 The Classification Algorithm

We now specify our machine learning based classification algorithm. The host
initiating the flow is defined as the client and the host accepting the flow - as
the server. We consider only packets that contain payload.

Feature extraction. The use of classification algorithms based on machine learn-
ing requires us to parameterize the flow, turning each flow z into a vector of
features V, = (V1,..., V), where each coordinate V; contains some statistical
parameter of the flow z (e.g., its packet mean size). Our study focused on real-
time classification, making it necessary to concentrate on features that are both
cheap to calculate and can be calculated in streaming mode (namely, inspecting
a single packet at a time and seeing each packet only once).

The feature extraction stage consists of two phases. In the first phase, we
consider basic traffic flow properties and collect the corresponding parameters
for each flow. The statistics are collected until we reach classification point (the
point in time upon we decide on the flow’s application type). All the experimental
results reported in this paper used an inspection length parameter of m = 100
packets, that is, all flows were classified upon seeing packet 100 (or earlier, if
the flow size was less than 100 packets). In the second phase, once the classifier
reaches classification point, it turns the statistics collected into a feature vector,
which is then used as the input for the classifier.

Feature Set. Our complete feature set included the following 17 different pa-
rameters: Client number of packets; Server number of packets; Total number of
packets; Client packet size expectation; Server packet size expectation; Client
average ‘packets per second’ rate; Server average ‘packet per second’ rate; Client
packet size variance; Server packet size variance; Total client bytes; Total server
bytes; Download to upload ratio; Server average number of bytes per bulkﬁ;
Client average number of bytes for bulk; Server average number of packets for
bulk; Client average number of packets for bulk; and Transport protocol (TCP
or UDP). Note that in the asymmetric setting, some of our features take zero
value. Moreover, unidirectional flows exist in a symmetric routing as well, for
example during FTP download.

3 Contiguous parts of a flow, separated by idle periods of 1sec or more.

378 R. Bar-Yanai et al.

The k-nearest neighbors algorithm. This is one of the simplest and most well-
known classification algorithms. It relies on the assumption that nearby data sets
have the same label with high probability. In its simplest form, the algorithm
classifies flows as follows. Upon receiving the feature vector V, of a new flow z,
the algorithm finds its k-nearest neighboring flows (in Euclidean distance) in the
training set. The flow z is then assigned the label associated with the majority
of those neighbors. In our experiments we used single neighbors (k = 1); we
discuss the use of multiple neighbors in the discussion section. Our preliminary
tests show a reasonably good classification rate of above 99% for k = 1.

The main problem with the k-nearest neighbors algorithm is that its time
complexity grows linearly with the training set size, which is problematic as the
training set may contain thousands of samples. Algorithm accuracy, learning
time and complexity are compared in [I0]. To address this disadvantage, we
combined the k-nearest neighbors algorithm with the k-means algorithm.

The k-means algorithm. Another component in our classifier is the k-means al-
gorithm. In the training phase of k-means classification, the flows are divided
into k clusters (according to geometrical similarity of their corresponding vec-
tors). We then label each cluster based on the majority of flow types that have
been assigned to the cluster. Now, a new flow z is classified by finding the cluster
C whose center is nearest to . The flow x is assigned with the label of C. The
algorithm’s accuracy is only 83%, but it requires considerably less computational
resources compared to the k-nearest neighbors algorithm.

An analysis of the distances between flows and their cluster centerd] reveals
that the distance distribution is Gaussian, so in each cluster most of the flows
are placed close the cluster center. This suggests that the flow’s nearest neighbor
is likely to fall in the same cluster with high probability, and only instances very
far from the cluster center can have their nearest neighbor placed in another
cluster. Our hybrid algorithm, presented next, relies on this fact. We start by
presenting the hybrid algorithm as a whole, and then discuss its properties.

Our hybrid algorithm. The core of our final classifier is a hybrid algorithm that
integrates the above two algorithms, thus combining the light-weight complexity
of the k-means algorithm, with the accuracy of the k-nearest neighbors algo-
rithm. The hybrid algorithm also features additional refinements in the k-means
clustering phase. As mentioned previously, our algorithm has two phases: the
training phase and the classification phase.

In the training phase, using the labeled data in our training set, we construct
a set of clusters in two stages. In the first stage, for each protocol (HTTP,
SKYPE, ...), we run the k-means algorithm on the flows in our training set that
are labeled as the protocol being considered. We note, that it is common that
a collection of flows all generated by the same protocol may have very diverse
behavior (and thus a diverse cluster structure). This follows by the fact that
certain protocols (such as HTTP) may behave in different manners depending on
the precise setting in which they are used (e.g., a HTTP flow carrying streaming

4 Omitted for space considerations; also noted independently in [2], although different
parameters were used.

Realtime Classification for Encrypted Traffic 379

video might not look similar to one carrying text only). The result of our first
stage clustering, is a set of cluster centers (k centers for each protocol), where
each cluster is labeled naturally by the protocol in which it was constructed.

We now turn to the second stage of our clustering. After stage 1, clusters gen-
erated from different protocols might overlap, which might cause classification
errors. To overcome this, in our second clustering stage, we redistributes the
entire sample set of cluster centers defined in stage 1. Namely, using the same
cluster centers that were found in stage 1, each flow in our training set is asso-
ciated with the cluster center closest to it. Our two stage clustering is presented
as Algorithm [1 below. In what follows, X; is the dataset of flows generated by
application ¢, C; is the set of k cluster centers of application ¢, and C is the set
of centers after stage 1 of our clustering (k centers for each application).

Algorithm 1. Pseudo code for our two stage clustering
for-each X; € {X1,..., X;}
C; = k-means(X;, k)
c=ciyc:y....ua
X=xUx:U..Ux,
for-each z; € X
associate x; with the closest center from C.

This concludes the training phase of our algorithm. Now, for a given flow
x, the online classification is also done in two stages. First, we find the cluster
center ¢ nearest to (the geometrical representation of) x. Note that this may
not be enough. Namely, recall that after the second stage of our training, the
clusters may not be homogeneous, and thus it is not clear how to label x given c.
For this reason, we use the second stage of our online classification, which runs
the k-nearest neighbors algorithm (for £ = 1) over the members of the cluster
corresponding to ¢. The resulting Algorithm [2 is presented below.

Algorithm 2. Pseudo code for hybrid classification

J = argmin, ||z — ¢;|, where ¢; € C
nb = argmin, ||z; — z||, where z; is associated with cluster center c;
return label(nb)

Some remarks are in order. The design of our algorithm was guided by the ob-
servation that nearest neighbor classification is very accurate but slow in running
time, while k-means classification is fast but has relatively weak accuracy. This
naturally leads to the idea of combining the two algorithms. However, one may
first consider a seemingly more natural way of combining the two algorithms,
namely, for training take the entire training set and cluster it using the k& means
algorithm (here, one would take a large k), and then perform the two-stage
classification suggested above. We have checked this simpler hybrid technique,
and indeed it yields very good results. Namely, on the one hand the accuracy

380 R. Bar-Yanai et al.

remains almost identical to that of the k-nearest neighbor algorithm, while on
the other, the performance resembles that of the k-means algorithm. However,
we have noticed that our two-stage training technique improves the overall accu-
racy (without modifying the running time). This follows from the fact that in our
two-stage clustering, flows of the same protocol tend to be clustered together.
Thus in classification, using the nearest neighbor approach, we are able to ovoid
mislabelings. We also note that our two-stage training procedure is more efficient
in running time than the naive single stage training, despite the fact that we run
the k-means algorithm multiple times (once for each application type). This can
be explained by the use of a much smaller data set on each separate run.

Setting parameters and running time analysis. The complexity of the algorithm
highly depends on the clusters that were formed and on the distribution of
the inspected flows. In the worst case, the outcome could be an unbalanced
clustering, with few large clusters and many small ones. The hybrid algorithm
uses the nearest-neighbor procedure within the nearest cluster as the final stage
of classification, and therefore the complexity is directly affected by the cluster
size. It is not unreasonable to assume that the distribution of the inspected flows
correlates strongly with the cluster distribution, i.e., most of the flows will likely
be assigned to a large cluster. In this case we lose accuracy without achieving
the desired performance improvement.

We overcome this difficulty by setting a maximum size for each cluster. Then,
in the end of our training phase, we reduce the size of a large cluster by removing
random flows from it until reaching the desired size. We found it useful to bound
cluster sizes by 4n/c, where ¢ is the number of clusters and n is the training
set size. Our experiments show that this restriction does not affect the overall
accuracy. On the other hand, the complexity of our classification can now be
bounded by 4% + c. Namely, it takes ¢ comparisons to find the closest cluster
center, and then 4% comparisons to find the nearest neighbor in the cluster at
hand. We minimize the running time of 42 + ¢ by setting c to 4,/n.

The complexity of the hybrid algorithm is thus much better than that of the
nearest neighbors algorithm (which is n). In fact, this is just a worst-case upper
bound, and the actual experimental results are even better; as seen in Section
[, the practical complexity is almost as good as the complexity of k-means.

Leveraging Internet “heavy host” nature to save performance. Another useful
component of our hybrid classifier makes use of a simple and relatively small
cache in order to save more than 50% of the classification time and memory.
This component relies on the heavy host phenomenon. Heavy hosts are hosts that
consume considerably more network resources compared to other hosts. Both the
Web and P2P systems are known to have heavy hosts [II8/9]. Inspecting P2P
and HTTP traffic usually reveals a small percentage of hosts that account for a
large percentage of the total flows and used bandwidth. In the Web, this behav-
ior is mainly driven by content popularity [8], as popular content is often held
at a small number of servers. In P2P systems, heavy hosts behavior is caused by
a different reason, namely, the distribution of P2P traffic, which is dominated by

Realtime Classification for Encrypted Traffic 381

“free riders” (i.e., clients that do not contribute content and mainly consume)
and “benefactors” (i.e., clients that mainly contribute and do not consume) [IJ.

Our findings show that the top ranked host accounts for about 0.7% of the
total flows, and the same more or less goes for the second ranked host. The
third accounts for 0.5%, the tenth accounts for 0.3% and these figures continue
to drop sharply. All in all, we find that the 1000 top ranked hosts account for
more than 50% of the flows. This distribution suggests the use of an LRU cache
in our classification process. For each server stored in the LRU cache, the cache
keeps the host TP and port of the flow server as its key and the flow class as the
value. The classification works as follows. On receiving a new flow, first check
if its server’s host IP and port are stored in the LRU. If the information exists
in the cache, then classify the flow according to the LRU cache, else use the
classification algorithm and store the result in the LRU cache.

This classification caching scheme has a serious flaw: if the algorithm mis-
classifies one of our top ranked servers, then all flows destined to it would be
misclassified as well. To overcome this problem, we keep in the LRU cache the
last ¢ classification results destined to a given server, for some parameter ¢. Once
we have £ results concerning a given server in the LRU cache, we apply a ma-
jority vote to decide its class. This improves our accuracy, as the probability
of misclassification drops exponentially with ¢. Misclassification can be reduced
even further by adding checkpoints, and rerunning the classification algorithm
every p classifications, replacing the oldest classification in the last classification
list. This improves the overall accuracy of the LRU cache by an additional 1%-
2%. Our experiments indicate that using the LRU cache, more than half of the
flows are classified on the basis of their first packet, in O(1) time. Finally, we
remark that it is possible to use such LRU caching within any classifier to boost
both its performance and accuracy.

4 Results

In this section we present our evaluation methods and the experimental results
obtained by our algorithms. We also discuss a unique aspect of our work, namely,
the implementation and testing of our algorithm in line rate in the SCE 2020,
the network traffic controller box of Cisco.

Algorithm evaluation. We used two data sets in our validation process, one small
and the other much larger. For the small data set we extracted 4000 flows from
each application type (32k flows in total). On each test we partitioned the data
set into two: a training set consisting of 1000 randomly selected flows and a
validation set (to be classified) containing the rest of the flows. We repeated the
test several times and took the average result. For the large data set we used
the entire data set available, where again 1000 flows of each application type
were chosen randomly into the training set and the rest of the flows were taken
into the validation set (1.5M flows in total). The basic experiments were done
using the small data set, while some of the major experiments were repeated on
the large data set. The results were very consistent, and the main added value

382 R. Bar-Yanai et al.

of the large data set turned out to be the ability to test one of our algorithm
refinements, namely, the use of the LRU cache.

Algorithm accuracy. Our results are presented in Table[Il BitTorrent (BT) and
Encrypted BitTorrent flows were grouped together, namely, classifying encrypted
BitTorrent into non-encrypted BitTorrent was counted as a success and the same
for the other way around. As mentioned, the k-means algorithm is somewhat less
accurate and achieves a modest average accuracy rate of 83%. The k-nearest
neighbors (k-NN) algorithm achieves the best results, with overall accuracy of
99.1%. Its accuracy on traditional applications is very close to 100%, but as men-
tioned, the algorithm is too expensive for realtime applications. The accuracy of
the hybrid algorithm is very similar to that of the k-nearest neighbors algorithm,
implying that very little accuracy is lost by combining the two approaches.

Table 1. Algorithm accuracy

|Algorithm|Http|SMTP|POP3|Skype|EDOnkey| BT |Encrypted BT|RTP | 1CQ |
k-means | 0.78 | 0.93 | 0.93 | 0.85 0.80 [0.75 0.74 0.9310.71
k-NN 10.997| 0.999 | 1.0 |0.945| 0.947 |0.96 0.98 0.997|0.962
hybrid (0.997| 0.999 {0.998 | 0.94 0.94 10.963 0.974 0.992(0.954

One of the main purposes of this study was dealing with encrypted flows in re-
altime. Indeed, encrypted BitTorrent exhibited results similar to non-encrypted
BitTorrent. Also note that Skype (which is encrypted) exhibits an accuracy
similar to BitTorrent. These results look very promising and indicate that our
algorithm is insensitive to encryption and can classify encrypted traffic as eas-
ily as non-encrypted one. The experiments conducted using our own generated
records (recorded manually, see Section 2]) yielded even a higher accuracy. We
note that this may be attributed in part to localization effects of the records.

Table 2. Complexity

Data Set Size|k-means|k-nearest neighbor| hybrid
100 153 Sec 177 Sec 150 Sec
1000 153 Sec 900 Sec 151 Sec
9000 153 Sec 7300 Sec 172 Sec

Table 2l presents a comparison of the classification time. We ran the classifiers
on the same environment with the same data and similar configurations (cluster
numbers). The classification was done using the LRU cache refinement. The
results indicate that the k-nearest neighbors algorithm is by far the most time
consuming. The time requirements of our hybrid algorithm are almost as low as
those of the k-means algorithm, which is the most efficient.

Realtime Classification for Encrypted Traffic 383

Realtime evaluation. We tested the feasibility of our algorithm in a realtime
embedded environment, by implementing the k-nearest neighbors and hybrid
algorithms on the SCE2020 platform, one of Cisco’s network traffic controllers.
More specifically, the algorithms were developed and implemented as a stand-
alone component (in C++, on a PPC dual core) on SCE 2020. We tested the
accuracy of the algorithms by injecting the records (flows) using the Endace tool
[6] and comparing the classification results.

The Endace tool injected the traffic in line rate as it was recorded, while the
SCE2020 was configured to send a report on each classified flow. The report
contained the flow five-tuple and the assigned application. The accuracy results
were similar to our off-line tests, as expected. We offer the following conclusions.

Technical Limitations. The algorithm employs basic mathematical calculations,
mostly simple additions and multiplications. Implementing such an algorithm
may be more challenging on a platform that does not support floating point
primitives, although this difficulty is of course solvable in software.

Memory. The algorithm used 76 bytes per flow on the statistics collection phase
and one Megabyte for the training set. Taking into account a concurrency level
of a few thousand flows (in the classification phase) and the use of an LRU table,
the classifier uses only 4-5Mb. This is a very low figure (for core classifiers) and
fits our realtime low memory usage requirement.

Performance. Running the algorithm did not appear to exert any stress on the
CPU. This is not surprising considering, by comparison, the amount of work
required by a DPI classifier. However, one must keep in mind that the SCE2020
box runs many tasks besides the classification, and hence it is expected of the
classifier not to load the CPUs. This should be tested further.

Summarizing, there appear to be no technical, memory or performance limita-
tions in implementing our algorithm in a real-world professional classifier. The
algorithm has some practical limitations, such as a somewhat high average clas-
sification point. For further discussion of usability issues see Sect.

5 Discussion

Conclusions and directions for future study. This paper presents a statistical
algorithm enhancing and complementing traditional classification methods. Its
strength is in points where traditional methods are relatively weak, most impor-
tantly in handling encryption, but also in asymmetric routing and packet dis-
ordering. The proposed algorithm is shown to be fast and accurate, and has no
limitations to implementing it in professional realtime embedded devices. Hence
it can be implemented as a complementary method for dealing with encrypted
and other problematic flows.

Misclassification. Flow classification is usually employed by traffic controllers to
enforce some policy on the traffic flow. The result of imposing a wrong policy
may significantly affect the user experience. Thus, in some cases it is better to
classify flow as “unknown” than to misclassify it. We propose to label traffic

384 R. Bar-Yanai et al.

as unknown based on the notion of homogeneous neighborhoods. Namely, define
the flow neighborhood (k-nearest neighbors, for k > 1) as homogeneous if all
neighbors have the same label. Then classify a given flow as follows. In case its
neighborhood is homogeneous, give it the neighborhood label; otherwise, mark it
as “unknown”. Our results show that this approach reduces misclassification lev-
els but results in many more “unknown” flows. This tradeoff poses an interesting
direction for further investigation.

Combining DPI and statistical approaches. Our algorithm has several advan-
tages over traditional methods but still, the fastest and most accurate way to
classify simple HTTP traffic is by using DPI, relying on a simple string signa-
ture. Yet, our algorithm can be used in situations where traditional methods fail.
Indeed, the strengths of the statistical approach correspond to the weaknesses
of DPI. For example, flows that were not identified by the traditional classifier
(such as encrypted flows), and were labeled as ‘unknown’, may now be clas-
sified correctly using our algorithm, with little additional computational cost.
Combining DPI and our proposed algorithm in such a way also allows a quick
and efficient way to cope with new applications (one of the major drawbacks of
DPI classification). Specifically, until a DPI signature is generated for the new
application, our algorithm may give the customer a quick solution.

References

1. Basher, N., Mahanti, A., Mahanti, A., Williamson, C.L., Arlitt, M.F.: A compar-
ative analysis of web and peer-to-peer traffic. In: Proc. 17th WWW, pp. 287-296
(2008)

2. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. In:
Proc. ACM CoNEXT, p. 6 (2006)

3. BitTorrent. Tracker peer obfuscation,
http://bittorrent.org/beps/bep_0008.html

4. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through simple
statistical fingerprinting. Computer Commun. Review 37(1), 5-16 (2007)

5. Dewes, C., Wichmann, A., Feldmann, A.: An analysis of Internet chat systems. In:
Proc. 3rd ACM SIGCOMM Internet Measurement Conf. (IMC), pp. 51-64 (2003)

6. Endace. The dag tool, http://www.endace.com/

7. Este, A., Gringoli, F., Salgarelli, L.: Support Vector Machines for TCP traffic
classification. Computer Networks 53(14), 2476-2490 (2009)

8. Gummadi, P.K., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.:
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In:
Proc. SOSP, pp. 314-329 (2003)

9. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classi-
fication in the dark. In: Proc. ACM SIGCOMM, pp. 229-240 (2005)

10. Kim, H., Claffy, K.C., Fomenkov, M., Barman, D., Faloutsos, M., Lee, K.-Y.: In-
ternet traffic classification demystified: myths, caveats, and the best practices. In:
Proc. ACM CoNEXT, p. 11 (2008)

11. Madhukar, A., Williamson, C.L.: A Longitudinal Study of P2P Traffic Classifica-
tion. In: Proc. IEEE MASCOTS, pp. 179-188 (2006)

http://bittorrent.org/beps/bep_0008.html
http://www.endace.com/

12.

13.

14.

15.

16.

17.

18.

19.

20.

Realtime Classification for Encrypted Traffic 385

McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow Clustering Using Machine
Learning Techniques. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015,
pp. 205-214. Springer, Heidelberg (2004)

Moore, A.W., Zuev, D.: Internet traffic classification using bayesian analysis tech-
niques. In: Proc. ACM SIGMETRICS, pp. 5060 (2005)

Nguyen, T.T., Armitage, G.J.: A survey of techniques for internet traffic classifi-
cation using machine learning. IEEE Comm. Surv. & Tutor. 10, 56-76 (2008)
Paxson, V.: Empirically derived analytic models of wide-area TCP connections.
IEEE/ACM Trans. Networking 2(4), 316-336 (1994)

Roughan, M., Sen, S., Spatscheck, O., Duffield, N.G.: Class-of-service mapping for
QoS: a statistical signature-based approach to IP traffic classification. In: Proc.
4th ACM SIGCOMM Internet Measurement Conf. (IMC), pp. 135-148 (2004)
Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of
p2p traffic using application signatures. In: Proc. 13th WWW, pp. 512-521 (2004)
Zander, S., Nguyen, T.T., Armitage, G.J.: Automated Traffic Classification and
Application Identification using Machine Learning. In: Proc. 30th IEEE LCN, pp.
250-257 (2005)

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester
(2001)

Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J.
Machine Learning Research 3, 1157-1182 (2003)

	Realtime Classification for Encrypted Traffic
	Introduction
	Methodology
	The Classification Algorithm
	Results
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

